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Summary

A three-dimensional cubic cavity flow has been analyzed for diatomic

gases by using the Boltzmann equation with the Bhatnagar-Gross-Krook

(B-G-K) model. The method of discrete ordinate was applied, and the

diffuse reflection boundary condition was assumed. The results, which show
a consistent trend toward the Navier-Stokes solution as the Knudson

number is reduced, give us confidence to apply the method to a three-

dimensional geometry for practical predictions of rarefied-flow

characteristics. The CPU time and the main memory required for a three-

dimensional geometry using this method seem reasonable.
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mass of a molecule

number particle density

gas constant
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index of physicalspace
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Introduction

With space vehicles orbiting the world at hypersonic speed, numerical

methods to cover all flow regimes become more important. Advances in
computer hardware in recent years allow methods based on the kinetic

theory to be used for practical applications. Many two-dimensional
problems have been solved by the kinetic approach. 1"7 A limited number

of three-dimensional problems have been solved recently by the direct-
simulation Monte Carlo (DSMC) method. 8"10 However, there are no three-

dimensional numerical solutions based on the discrete ordinate method 11

applied to a Boltzmann equation.

A cubic cavity flow problem has been solved for diatomic gases using

the Boltzmann equation with the Bhatnagar-Gross-Krook (B-G-K}
model. 12,13 Because neither theoretical nor experimental data are available

for cubic cavity flow in free molecule flow, slip flow, and transition flow
regimes, efforts have been made to obtain a continuum flow solution as



closedas possible so that the results from this study can be compared with
the results of the Navier-Stokes solution. 14

Governing Equation

The geometry of the problem considered is shown in figure 1. A cubic

cavity with the same dimension on all sides is filled with diatomic gas (such

as air), and the wall temperature is assumed to be the same on all walls.

The top surface (j = jmax surface} is moving at a constant speed, and

steady-state conditions are reached and analyzed numerically.

The distribution function at the energy level Ea, fa' is governed by the

Boltsmann equation with the Bhatnagar-Gross-Krook-Morse model for the

collision terms:

0f° + Vy0fa + 0f° _el(Fto - fa) ÷ Vinel(Fia- fa) (1}
Vx-_ oy v._- --

where
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The elastic collision frequency Ve115'16 is given by

(s)

nkTt (4)
lieu = (1 + a)#

whereas the inelastic collision frequency Vinel

formula of

Pinel = a Vel

is related to /_el in the

(5)

zR - s(: + a) (6)
3a

where the rotational relaxational parameter Zl_ must be obtained by

experiment. The viscosity-temperature relation of the form



(7)

is assumed and the value of s can be found in reference 17; for the current

study, a and s are equal to 0.4 and 0.756, respectively, for air. The

subscript 1 indicates the reference condition. The reference condition used

in this study is the equilibrium flow in the cubic cavity when the top surface

is stationary.

The reference viscosity is related to the reference mean free path A1

by the relation

5
Pl : --mn1A1(21rRT1) 1/2 (8)

10

Combining equations (4) to (8) gives

_ 16 nkTt /Tt] -s

Uel- 5(1 + a) Almnl(2_rRTl)l/2 _TI)
(9)

All macroscopic quantities,which willbe listedinthe nondimensional

form, can be calculatedin terms of f_r"

Nondimensionslisation

A characteristic velocity used for nondimensionalization is defined as

V 1 = (2RT1) 1/2 (10)

The det'mitions of nondimensional variables axe defined as follows:

fi n T: -- ; 'I' = __ (11)
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DbcretiaationofDistributionFunctionandNumericalScheme
Thedistributionfunctionat energy level _r, fo, was discretized with

equal spacing in the physical space, the arguments of the odd equally spaced

quadrature (see appendix and ref. 18) was the spacing for the velocity space,
and the roots of the Laguerre polynomial of degree 4 was used for the

spacing for the internal energy space. The value of the distribution function
at these discretized points was calculated by solving the Boltzmann equation

using the finite difference method in the physical space.
The difference scheme is the first-order upwind difference based on the

molecular velocity; for example,

C)fo" = fa,id,k,a,_,7 - f_,i-l.i,k,a,_:l when Cx >" 0

i_ A_

and

= f_,iq-ld,k,a,#,'7 - f¢,i,j,k,a,_,'7 when Cx "< 0

The distribution functions were then integrated for all macroscopic

properties by using the odd equally spaced quadrature, e.g., the particle

density at energy level • and at the physical point (i, j, k) is

f_dvxdvydvz

n' n' ' n _ ' '

a:-_ _:-n _ _ _:-nr e

kak#k_o(ij,k,a,_,_)

where ka, k_, and k_ are the weighting coefficients of the odd equally
spaced quadrature for the velocity components va, ¢#, and _, respec-
tively. These properties were summed over the energy space, and then
saved and used for the next iteration.

Boundary Conditiona

For a constantly moving surface, perfectly diffuse reflection is assumed to

specify the interaction of the molecules with the surface of the moving plate.
Molecules which strike the moving surface (j -- jmax surface) are emitted

with a Maxwellian velocity distribution characterized by the plate temper-

ature _'w and the plate velocity £'; that is,

_
^ ( i ,:/2 ÷.

= nw_ e



where the density of molecules diffusing from the plate fiw is not known
a priori and must be found by applying the condition of zero mass flux
normal to the plate at the surface, i.e.,

y :d0xd0yd0z• i y :d0xd0yd0.=0
where 3+ is the distribution function for Cy :> 0 and f- is the distri-

°r O"

bution function for _y < 0. In the discrete ordinate form, this gives the
relation at {i, j, k)

2(_r) i/2 _ n' n" n'"
fiw = _1/2" _ _I _ k_k_k_f_'a'_'__--1 _:-n' = _=-n ''r

W

Similarly, a zero-mass-flux boundary condition was applied to all other

surfaces, and a Maxwellia_n velocity distribution function characterized by
the plate temperature was used for the molecules emitted from the surface.

Because of the symmetry of the flow inside the cubic cavity, half of the

cubic cavity was used for the computation. At the symmetry plane (i.e.,
k = kmax plane), the symmetry boundary condition was applied; that is,

the distribution function of the outgoing molecule is equal to the distri-

bution function of the incoming molecule at the symmetry plane.

Computational Procedures

For the present study, the initial condition assumed was that the flow

everywhere was characterized by fi : 1 and T = 1. As mentioned

previously, the j = jmax surface was selected to be the moving surface.
The computation began from the j = 2 surface with a known value for

fa at the j = 1 surface. On each j = constant surface, the computation

was performed along the i direction first and then marching toward the
+++ The symbol f +++ issymmetry plane (k = kmax) starting with f¢

defined as the subdistribution function at energy level _r for Vx > 0,

¢y :> 0, and ¢,_ > 0. At the symmetry plane, the symmetry boundary con-
dition was applied (i.e., f ++- _ +__c .... _ +÷_ ..,: _ j. l_nowmg ic, at me sym-
metry plane, the computation was marched backward from k : kmax - 1

toward k : 1. Similarly, the computation continued for f -++ and f -+-
O" O"

After the computation reached the j : jma.x surface, the particle

density was found at this surface by applying the no-flux boundary

condition and then the computation marched downward from j = jmax - 1

to+__j^?_l surface. The order of computation was f +-+,
fa , f , and f--- The particle density on the surfaces coul_ then
be found by using the no-flux boundary condition and the iteration



continued.Thefourth-orderGauss-Laguerrequadraturewasusedforthe
energyspace,andfoursetsofthethird-orderoddequallyspacedquadrature
wereusedfor themolecularvelocityspacewith theequalspacingof 0.15.
(Seethe appendix.) The convergence was assumed when the maximum
particle density increment was less than 10 -4 .

Results

As mentioned previously,effortshave been made tocalculatethe flow

with as small a Knudson number as possibleso that the resultscould be

compared with the solutionofthe Navier-Stokesequation. The resultsof

thisstudy are allbased on @ = 0.1. Comparisons between the Boltzmann

solutionand the Navier-Stokes solution14are given in figures2 to 4.

Figure 2 shows the velocity profilesalong the centerlinefor free

molecule flow (Knudson numl_r (Kn) - 100),slipflow (Kn = 0.1),and

nearlycontinuum flow (Kn = 0.03).Itclearlyshows that the flow slipson

the moving surfacefor Kn _-100 and Kn --0.1;that is,the flow velocity

on the surfaceislessthan the speed ofthe moving wall. Italsoshows that

the no-slipboundary condition of the Navier-Stokes equation was almost
recoveredfor Kn --0.03.

The comparison of the velocityvector plot on the symmetry plane

between the Navier-Stokessolutionand the Boltzmann solutionisgiven in

figure3. The generalshapes of the primary vortex are similarexcept that

the centerof the vortex for the Navier-Stokes solutionisslightlyfarther
downstream than that for the Boltzmann solution.

Figure4 shows the surfacestaticpressurelookingfrom the centerofthe

cubic cavity toward the upper cornerfor both the Navier-Stokes solution
and the Boltzmann solution. The three-dimensionaleffectof the static

pressure distributionis clearly shown qualitatively. The Boltzmann

solution,even forthe caseof Kn ---0.03,isstillnot closeto the continuum

solutionobtained by the Navier-Stokes equation;however, the consistent

trend toward the Navier-Stokessolutionisencouraging.

The symmetry plane velocityvector plotsfor two differentKnudson

numbers are shown infigure5. The shape ofthe primary vortex isclearly

shown even for Kn = 100. The centerofthe vortex moves upward toward

the centerobtained by the Navier-Stokessolution(fig.3)when the Knudson

number isreduced. Italsoclearlyshows that the magnitude ofthe velocity

vectorsincreasesas expected when the Knudson number isreduced.

Figure 6 isa plot of the number particledensityon the surfacesfor

three Knudson numbers. The distributionpatterns for Kn ---100 and

Kn = 0.03 are completely different.For a freemolecular flow (Kn = 100),

therearenot enough molecular collisionstoensurethe high number particle

densityat the upper downstream corneras shown forthe caseof Kn = 0.03.

The high number particledensityon the upper cornerof the downstream

verticalsurface(i.e.,near i = imax and j = jmax) and the low number



particle density on the upper corner of the upstream vertical surface (i.e.,

near i = 1 and j = jma_x) is a reasonable solution.

The convergence history is shown in figure 7 for Kn = 0.03. Each

iteration took about 40 min on the Cray 2 supercomputer. Fortunately, it

required less than 50 iterations to reach a convergent solution. In other
words, it took less than 30 hr of CPU time for Kn = 0.03. The CPU time

for Kn = 100 was less than 10 hr. To reduce the main memory

requirement, the Maxwellian distribution functions and collision frequency
were calculated repeatedly; as a consequence, extra CPU time was needed

for each iteration. The grid sise used in the study was 31 by 31 by 16 in

the physical space, 12 by 12 by 12 in the molecular velocity space and 4
levels of internal energy in the energy space. Considerable CPU time can

be saved by improving the integration scheme in the molecular velocity

space. In any case, the discrete ordinate method used in this study can be

applied to simple three-dimensional geometries without using the parallel
programming technique.

Concluding Rem_rlm

A three-dimensionalcubiccavityflow was solvedfordiatomic gasesby

using the Boltsmann equation with the Bhatnagar-Gross-Krook (B-G-K)
model. A comparison was made between the Boltsmann solutionand the

Navier-Stokes solution for the velocityprofilesalong the centerline,the

primary vortexon the symmetry plane,and the surfacestaticpressure.The

generaltrend toward the Navier-Stokessolutionas the Knudson number is

reduced indicatesthat the solutions axe very reasonable and that the

discreteordinatemethod can be used with confidencetoa three-dimensional

geometry for practicalpredictionsofrarefied-flowcharacteristics.Because

ofthe robustnessofthisnumerical scheme, itrequireslessthan 50 iterations

to obtain a converged solution.The presentmethod has a potentialto be

a practicalflow simulationmethod to cover allflow regimes.

Appendix--L_guerte and Odd Equally Spaced Quadraturw

Almcima and Weight Factors for Laguerre Integration

oo
n

fe-Ef(E)dE = _ Rif(Ei)
0 i:l

where Ei are the abscissasand axe the rootsof Laguerre polynomials.

For n = 4,

E 1 = 0.322547689619

10



E 2 -- 1.745761101158

E3 = 4.536620296921

E4 : 9.395070912301
R 1 = 6.03154104342×10 "1

R 2 : 3.57418692438×10 "1

R 3 = 3.88879085150×10 -2

R 4 --- 5.39294705561×10 .4

Odd Equally Spaced Quadrature

1 n

_f(x)dx _ _ kif(ai)
0 i=1

where the arguments a i are taken to be 1/(2n), 3/(2n),..., 1 - [l/(2n)] and

the weighting coefficients ki for n : 3 are

kI = k3 = 0.375

k2 = 0.25
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